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Search at Subgraph Level is Suboptimal
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A common strategy partitions a graph into subgraphs 
according to the neural net layers, ignoring 
cross-layer optimization opportunities.

Empirical result: a regression of up to 2.6x and 32% 
on average across 150 ML models by limiting fusions 
in XLA to be within layers.
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Search Approaches: Long Compile Time
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Production Compilers: Multi-Pass
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● Models evaluated by research compilers: up to 1,000 node

● Industrial-scale models: up to 500,000 nodes!

● That’s why production ML compilers still decompose the 
compilation into multiple passes.

● None of the existing approaches support autotuning different 
optimizations in a multi-pass compiler.

○ Challenge: search space of a pass is highly dependent on 
decisions made in prior passes.



Our Goal
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Bring the benefit of search-base exploration to multi-pass 
compilers:

● for both graph and subgraph levels

● with flexibility via configurable search to tune subset of 
optimizations of interest

“A Flexible Approach to Autotuning 
Multi-Pass Machine Learning Compilers”



Production ML Compilation Stack at Google
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...



XTAT: XLA TPU Autotuner
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blue = optimizations that we tune
yellow = learned models
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Pass Configuration 
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configuration on a tensor graph 
for an optimization pass 

is 
a collection of per-node configurations that control

how the pass transforms each node in the graph



Layout Assignment
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Example:

add
[2,4,16]

reshape
[128]

conv
[2,8]

max
[4,16,8]

{0} {1,0}

{0,1,2} {0,2,1}{1,0,2}

{1,0,2} {0,2,1}

reshape’s 
node config



Layout Assignment
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Example:

add
[2,4,16]

reshape
[128]

conv
[2,8]

max
[4,16,8]

{0} {1,0}

{0,1,2} {0,2,1}{1,0,2}

{1,0,2} {0,2,1}

add
[2,4,16]{1,0,2}

reshape
[128]{0}

conv
[2,8]{1,0}

max
[4,16,8]{0,2,1}

copy
[2,4,16]{0,1,2}reshape’s 

node config
Layout 

Assignment



Layout Search Space
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Option #2: Proposed
● Tune layout options for important ops 

(convolution and reshape).
● For each important op, get valid input-output layouts from compiler.
● Leverage XLA layout propagation algorithm.

Option #1: Naive
● Layout options for each input/output are permutation of its 

dimensions.
● Many invalid configs because there are constraints between 

tensors.



Operator Fusion
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add
[2,4,16]{1,0,2}

reshape
[128]{0}

conv
[2,8]{1,0}

max
[4,16,8]{0,2,1}

copy
[2,4,16]{0,1,2}

1

0 0

Example:

add

reshape

conv

maxcopy

add

Operator 
Fusion



Tile Size & Code Gen Flags Search Space
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add

reshape conv

max
copy

add

tile sizes:
{ output: [2,8], kernel: [4,16,8] }
{ output: [2,4], kernel: [4,16,8] }
{ output: [2,4], kernel: [4,4,4] }
...

tile sizes:
{ output: [4,16,8] }
{ output: [4,8,8] }
{ output: [4,4,4] }
...tile sizes:

{ output: [128] }
{ output: [64] }
{ output: [32] }
...

Tune config for each fused node (kernel) independently.
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Joint Autotuning: Challenges
gA   --- A(configA) --->   gB   --- B(configB) --->   gout

add
[2,4,16]

reshape
[128]

conv
[2,8]

max
[4,16,8]

{0} {0,1}
{1,0}

{0,1,2}
{1,0,2}

{0,2,1}
{2,0,1}

{2,1,0}
{1,0,2}
{0,2,1}

add
[2,4,16]{1,0,2}

reshape
[128]{0}

conv
[2,8]{1,0}

max
[4,16,8]{0,2,1}

1

0

add

reshape

conv

max

add

Layout Fusion

add
[2,4,16]

reshape
[128]

conv
[2,8]

max
[4,16,8]

{0} {0,1}
{1,0}

{0,1,2}
{1,0,2}

{0,2,1}
{2,0,1}

{2,1,0}
{1,0,2}
{0,2,1}

add
[2,4,16]{1,0,2}

reshape
[128]{0}

conv
[2,8]{1,0}

max
[4,16,8]{0,2,1}

copy
[2,4,16]{0,1,2}

1

0 0

add

reshape

conv

maxcopy

add

Layout Fusion

configA determines 
the input graph gB 
to pass B and its 
search space

When we change 
configA to configA’, 
gB is changed, and 
configB is no longer 
valid.

How to not start the 
search for B from 
scratch when 
configA is changed?

Layout Fusion
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Methodology for Joint Autotuning

Returns:
A, A, …, B, B, …, C, C, … (sequential)
A, B, C, A, B, C, … (joint tuning)
or some combinations of them
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Methodology for Joint Autotuning

Candidate c:
c.graphs = [gA, gB, gout]
c.configs = [configA, configB] 

Change configA:
c.graphs = [gA, gB, gout]
c.configs = [configA’, configB] 

Fix c to be well-formed:
c.graphs = [gA, gB’, gout’]
c.configs = [configA’, configB’] 
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Construct Well-Formed Candidate

Key ideas:
● Update subsequent graphs

● Update configB’ to have 
configurations for all nodes in 
gB’ from:

Change configA:
c.graphs = [gA, gB, gout]
c.configs = [configA’, configB] 

Fix c to be well-formed:
c.graphs = [gA, gB’, gout’]
c.configs = [configA’, configB’] 

○ configB
○ global configuration store

(maintaining the best config 
per node)

○ default value
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End-to-End Search Schedule

● Separate tuning graph-level and kernel-level optimizations for 
scalability

● Tuning layout + fusion jointly is better than sequentially
● Tuning tile size + flag jointly is worse than sequentially

Tune layout-fusion jointly (simulated annealing)
→ then tune tile size (exhaustive)
→ then tune code gen flags (exhaustive)
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End-to-End Runtime Speedup
We measured end-to-end model speedups from autotuning 150 ML models. 
The figure shows models that achieve 5% or more improvement.

2.4x
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Code
Optimizer

Learned Cost 
ModelHardware

candidate cost

Evaluator

Ref: Kaufman and Phothilimthana et al., A Learned Performance Model for Tensor Processing Units, MLSys 2021.
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Tuning with Learned Cost Model

Execute the top k configurations from each worker according to 
the model on real hardware and pick the best. 
● k = 10 for graph-level optimizations
● k = 5 for kernel-level optimizations

Runtime Speedup (x) Tuning Time (min)
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Search Strategies

● Exhaustive
● Simulated annealing (SA)
● Evolutionary (EVO)
● Model-based optimization (MBO)
● Deep reinforcement learning (RL)
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Search Strategies: Fusion Autotuning

Average speedup across 10 runs. Each run evaluated 10,000 candidates.



XTAT: XLA TPU Autotuner
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