
A Flexible Approach to
Autotuning Multi-Pass
Machine Learning Compilers

Phitchaya Mangpo Phothilimthana, Amit Sabne, Nikhil Sarda,
Karthik Srinivasa Murthy, Yanqi Zhou, Christof Angermueller,
Mike Burrows, Sudip Roy, Ketan Mandke, Rezsa Farahani,
Yu Emma Wang, Berkin Ilbeyi, Blake Hechtman, Bjarke Roune,
Shen Wang, Yuanzhong Xu, and Samuel J. Kaufman*
Google, *University of Washington

Search-Based ML Compilers

subgraph

op
ti

m
iz

at
io

n
 s

co
p

e

TASO
PET

DeepCuts

FlexTensor

TVM
TensorComp...

Ansor

Halide

Chameleon
AdaTune

graph

Search-Based ML Compilers

subgraph

op
ti

m
iz

at
io

n
 s

co
p

e

TASO
PET

DeepCuts

FlexTensor

TVM
TensorComp...

Ansor

Halide

Chameleon
AdaTune

graph

Search at Subgraph Level is Suboptimal

P 4

A common strategy partitions a graph into subgraphs
according to the neural net layers, ignoring
cross-layer optimization opportunities.

Empirical result: a regression of up to 2.6x and 32%
on average across 150 ML models by limiting fusions
in XLA to be within layers.

Search-Based ML Compilers

subgraph

op
ti

m
iz

at
io

n
 s

co
p

e

TASO
PET

DeepCuts

FlexTensor

TVM
TensorComp...

Ansor

Halide

Chameleon
AdaTune

graph

Search Approaches: Long Compile Time

subgraph

op
ti

m
iz

at
io

n
 s

co
p

e

TASO
PET

DeepCuts

FlexTensor

TVM
TensorComp...

Ansor

Halide

Chameleon
AdaTune

XLAgraph

compile time (for ResNet like inference)

minutes hoursseconds

Production Compilers: Multi-Pass

P 7

● Models evaluated by research compilers: up to 1,000 node

● Industrial-scale models: up to 500,000 nodes!

● That’s why production ML compilers still decompose the
compilation into multiple passes.

● None of the existing approaches support autotuning different
optimizations in a multi-pass compiler.

○ Challenge: search space of a pass is highly dependent on
decisions made in prior passes.

Our Goal

P 8

Bring the benefit of search-base exploration to multi-pass
compilers:

● for both graph and subgraph levels

● with flexibility via configurable search to tune subset of
optimizations of interest

“A Flexible Approach to Autotuning
Multi-Pass Machine Learning Compilers”

Production ML Compilation Stack at Google

P 9

...

XTAT: XLA TPU Autotuner

P 10

Code
Optimizer

ML
program

Learned
Policy

decision

observation

to guide
the search

Learned Cost
ModelHardware

candidate cost

Evaluator

Graph-level
Optimizations:

Algebraic Simplification,
Layout Assignment,

Cross-Replica Sharding,
Operator Fusion,

Rematerialization, etc.

Kernel-level
Optimizations:

Tiling, Vectorization, Flags,
etc.

blue = optimizations that we tune
yellow = learned models

Learned
Policy

decision

observation

to guide
the search

Learned Cost
ModelHardware

candidate cost

Evaluator

XTAT: XLA TPU Autotuner

P 11

Code
Optimizer

ML
program

Graph-level
Optimizations:

Algebraic Simplification,
Layout Assignment,

Cross-Replica Sharding,
Operator Fusion,

Rematerialization, etc.

Kernel-level
Optimizations:

Tiling, Vectorization, Flags,
etc.

Pass Configuration

P 12

configuration on a tensor graph
for an optimization pass

is
a collection of per-node configurations that control

how the pass transforms each node in the graph

Layout Assignment

P 13

Example:

add
[2,4,16]

reshape
[128]

conv
[2,8]

max
[4,16,8]

{0} {1,0}

{0,1,2} {0,2,1}{1,0,2}

{1,0,2} {0,2,1}

reshape’s
node config

Layout Assignment

P 14

Example:

add
[2,4,16]

reshape
[128]

conv
[2,8]

max
[4,16,8]

{0} {1,0}

{0,1,2} {0,2,1}{1,0,2}

{1,0,2} {0,2,1}

add
[2,4,16]{1,0,2}

reshape
[128]{0}

conv
[2,8]{1,0}

max
[4,16,8]{0,2,1}

copy
[2,4,16]{0,1,2}reshape’s

node config
Layout

Assignment

Layout Search Space

P 15

Option #2: Proposed
● Tune layout options for important ops

(convolution and reshape).
● For each important op, get valid input-output layouts from compiler.
● Leverage XLA layout propagation algorithm.

Option #1: Naive
● Layout options for each input/output are permutation of its

dimensions.
● Many invalid configs because there are constraints between

tensors.

Operator Fusion

P 16

add
[2,4,16]{1,0,2}

reshape
[128]{0}

conv
[2,8]{1,0}

max
[4,16,8]{0,2,1}

copy
[2,4,16]{0,1,2}

1

0 0

Example:

add

reshape

conv

maxcopy

add

Operator
Fusion

Tile Size & Code Gen Flags Search Space

P 17

add

reshape conv

max
copy

add

tile sizes:
{ output: [2,8], kernel: [4,16,8] }
{ output: [2,4], kernel: [4,16,8] }
{ output: [2,4], kernel: [4,4,4] }
...

tile sizes:
{ output: [4,16,8] }
{ output: [4,8,8] }
{ output: [4,4,4] }
...tile sizes:

{ output: [128] }
{ output: [64] }
{ output: [32] }
...

Tune config for each fused node (kernel) independently.

P 18

Joint Autotuning: Challenges
gA --- A(configA) ---> gB --- B(configB) ---> gout

add
[2,4,16]

reshape
[128]

conv
[2,8]

max
[4,16,8]

{0} {0,1}
{1,0}

{0,1,2}
{1,0,2}

{0,2,1}
{2,0,1}

{2,1,0}
{1,0,2}
{0,2,1}

add
[2,4,16]{1,0,2}

reshape
[128]{0}

conv
[2,8]{1,0}

max
[4,16,8]{0,2,1}

1

0

add

reshape

conv

max

add

Layout Fusion

add
[2,4,16]

reshape
[128]

conv
[2,8]

max
[4,16,8]

{0} {0,1}
{1,0}

{0,1,2}
{1,0,2}

{0,2,1}
{2,0,1}

{2,1,0}
{1,0,2}
{0,2,1}

add
[2,4,16]{1,0,2}

reshape
[128]{0}

conv
[2,8]{1,0}

max
[4,16,8]{0,2,1}

copy
[2,4,16]{0,1,2}

1

0 0

add

reshape

conv

maxcopy

add

Layout Fusion

configA determines
the input graph gB
to pass B and its
search space

When we change
configA to configA’,
gB is changed, and
configB is no longer
valid.

How to not start the
search for B from
scratch when
configA is changed?

Layout Fusion

P 19

Methodology for Joint Autotuning

Returns:
A, A, …, B, B, …, C, C, … (sequential)
A, B, C, A, B, C, … (joint tuning)
or some combinations of them

P 20

Methodology for Joint Autotuning

Candidate c:
c.graphs = [gA, gB, gout]
c.configs = [configA, configB]

Change configA:
c.graphs = [gA, gB, gout]
c.configs = [configA’, configB]

Fix c to be well-formed:
c.graphs = [gA, gB’, gout’]
c.configs = [configA’, configB’]

P 21

Construct Well-Formed Candidate

Key ideas:
● Update subsequent graphs

● Update configB’ to have
configurations for all nodes in
gB’ from:

Change configA:
c.graphs = [gA, gB, gout]
c.configs = [configA’, configB]

Fix c to be well-formed:
c.graphs = [gA, gB’, gout’]
c.configs = [configA’, configB’]

○ configB
○ global configuration store

(maintaining the best config
per node)

○ default value

P 22

End-to-End Search Schedule

● Separate tuning graph-level and kernel-level optimizations for
scalability

● Tuning layout + fusion jointly is better than sequentially
● Tuning tile size + flag jointly is worse than sequentially

Tune layout-fusion jointly (simulated annealing)
→ then tune tile size (exhaustive)
→ then tune code gen flags (exhaustive)

P 23

End-to-End Runtime Speedup
We measured end-to-end model speedups from autotuning 150 ML models.
The figure shows models that achieve 5% or more improvement.

2.4x

ML
program

Graph-level
Optimizations:

Algebraic Simplification,
Layout Assignment,

Cross-Replica Sharding,
Operator Fusion,

Rematerialization, etc.

Kernel-level
Optimizations:

Tiling, Vectorization, Flags,
etc.

Learned
Policy

decision

observation

to guide
the search

Learned Cost Model

P 26

Code
Optimizer

Learned Cost
ModelHardware

candidate cost

Evaluator

Ref: Kaufman and Phothilimthana et al., A Learned Performance Model for Tensor Processing Units, MLSys 2021.

P 27

Tuning with Learned Cost Model

Execute the top k configurations from each worker according to
the model on real hardware and pick the best.
● k = 10 for graph-level optimizations
● k = 5 for kernel-level optimizations

Runtime Speedup (x) Tuning Time (min)

ML
program

Graph-level
Optimizations:

Algebraic Simplification,
Layout Assignment,

Cross-Replica Sharding,
Operator Fusion,

Rematerialization, etc.

Kernel-level
Optimizations:

Tiling, Vectorization, Flags,
etc.

Search Strategies

P 28

Learned Cost
ModelHardware

candidate cost

Evaluator

Learned
Policy

decision

observation

to guide
the search

Code
Optimizer

P 29

Search Strategies

● Exhaustive
● Simulated annealing (SA)
● Evolutionary (EVO)
● Model-based optimization (MBO)
● Deep reinforcement learning (RL)

P 30

Search Strategies: Fusion Autotuning

Average speedup across 10 runs. Each run evaluated 10,000 candidates.

XTAT: XLA TPU Autotuner

P 31

Code
Optimizer

ML
program

Learned
Policy

decision

observation

to guide
the search

Learned Cost
ModelHardware

candidate cost

Evaluator

Graph-level
Optimizations:

Algebraic Simplification,
Layout Assignment,

Cross-Replica Sharding,
Operator Fusion,

Rematerialization, etc.

Kernel-level
Optimizations:

Tiling, Vectorization, Flags,
etc.

