
www.bestppt.com

Phitchaya Mangpo Phothilimthana
Sumukh Sridhara

High-Coverage Hint Generation for
Racket Programming Assignments

University of California, Berkeley

RacketCon 2017

 s

2

In-Person CS1 Course - Enrollment: 1600/semester
Hint system deployment: Spring 2016 — Present

CS61A @ UC Berkeley
cs61a.org

http://cs61a.org

Getting Help (in large courses)

3

OFFICE
HOURS

FORUMS READING

Automated Hint
Generation System

Goals

5

Easy to operate for instructors

Hints that are useful but do not give away answers.

Robust (always able to produce a hint)

1

2

3

Types of Errors Analyzed from Past Data

6

Syntactic
Misconception Almost Correct The Rest

Types of Errors Analyzed from Past Data

7

Syntactic
Misconception Almost Correct The Rest

Structural
Checker

Repair
Synthesizer Case Analyzer

Syntactic Hints Repair Hints Case Hints

Structural Checker

8

Syntactic
Misconception Almost Correct The Rest

Structural
Checker

Repair
Synthesizer Case Analyzer

Syntactic Hints Repair Hints Case Hints

Syntactic Misconceptions —> Structural Checker

9

(define (pow b n)
 (define (square x) (* x x))
 (cond ((= n 0) 1)
 (even? n) (square (pow b (/ n 2)))
 (odd? n) (* b (pow b (- n 1)))
))

(
(

)
) missing parentheses

Student’s program:

High-level hint:
The computer thinks that your
program misses or has extra pairs
of parentheses.

Detailed hint:
>> Syntax expert:
Check the syntax of the conditional clause
at line 4, 5.

Example(s) of correct syntax:
(cond ((> a b) (* a b)) (else (func a b)))

Example(s) of bad syntax:
(cond (> a b) (* a b) else (func a b))

How Does Structural Checker Work?

10

Construct Error Pattern Example

cond missing a test expression or a body (cond ((> a b) #t)
 (#f))

cond missing a pair of parentheses around a body (cond ((> a b) * a b)  
 (else func a b))

cond
missing a pair of parentheses around a test
expression

(cond (> a b #t)
 (else #f))

cond
missing a pair of parentheses around
a pair of test expression and body

(cond (> a b) #t
 else #f)

if not matching (it test-expo then-expo else-expr) (if (< a b) #t)
define no body (define (min a b))

define multiple bodies that return non-void values
(define (min a b)
 (if (<= a b) a)
 (if (<= b a) b))

()
()

()

(
(

)
)

Simple pattern matching

Repair Synthesizer

11

Syntactic
Misconception Almost Correct The Rest

Structural
Checker

Repair
Synthesizer Case Analyzer

Syntactic Hints Repair Hints Case Hints

Almost Correct —> Repair Synthesizer

12

(define (square x) (* x x))

(define (pow b n)
 (cond
 ((even? n) (square (pow b (/ n 2))))
 ((odd? n) (* n (pow b (- n 1))))
))

Student’s program:

Hint:

The computer thinks that:
1. The body of the body expression at line 6 has some logical errors. 

What value should you multiply by?
2. You may have forgotten to specifically handle some of these following cases
 or handle them incorrectly in function (pow b n):
 (= n 0)

1
2
3
4
5
6
7

How Does Repair Synthesizer Work?

13

Follow the mutation-based approach by Singh et al., PLDI’ 2013

 for Python programs
 define error models (mutations) by overriding internal functions to

mutate different types of AST nodes

• Instructors must know about: 
 - mutation functions they need to override  
 - provided utility functions that can be used 

• A typical implementation of a mutation function for one question
requires 300 lines of code. 

How Does Repair Synthesizer Work?

14

(define-error-model ; rule 1
 [context ‘(* ? _)] [type ‘replace]
 [mutate-from ‘$arg1] ; arg1 = argument 1 of the function
 [mutate-to ‘($arg0)] ; arg0 = argument 0 of the function
 [hint “What value should you multiply by?”)

Example error models:

(define (pow b n)
 (cond
 ((even? n) (square (pow b (/ n 2))))
 ((odd? n) (* n (pow b (- n 1)))))
)

Student’s program:

(define (pow b n)
 (cond
 ((even? n) (square (pow b (/ n 2))))
 ((odd? n) (* b (pow b (- n 1)))))
)

How Does Repair Synthesizer Work?

15

(define-error-model ; rule 2
 [context ‘(define (pow _ _) ?)] [type ‘case]
 [mutate-from ‘$x] ; $x match anything
 [mutate-to ‘((cond ((= $arg1 0) 1) (else $x)))])

Example error models:

(define (pow b n)
 (cond
 ((even? n) (square (pow b (/ n 2))))
 ((odd? n) (* n (pow b (- n 1)))))
)

Student’s program:

(define (pow b n)
 (cond ((= n 0) 1)
 (else (cond
 ((even? n) (square (pow b (/ n 2))))
 ((odd? n) (* b (pow b (- n 1))))))
)

How Does Repair Synthesizer Work?

16

(define (pow b n)
 (cond
 ((even? n) (square (pow b (/ n 2))))
 ((odd? n) (* n (pow b (- n 1))))
))

Student’s program:
(define c (make-vector 2))
(define (pow b n)
 ((list-ref
 (list
 (lambda ()
 (cond
 ((even? n) (square (pow b (/ n 2))))
 ((odd? n)
 (* (list-ref (list n b) (vector-ref c 0))
 (pow b (- n 1))))))
 (lambda ()
 (cond
 ((= n 0) 1)
 (else
 (cond
 ((even? n) (square (pow b (/ n 2))))
 ((odd? n)
 (* (list-ref (list n b) (vector-ref c 0))
 (pow b (- n 1)))))))))
 (vector-ref c 1))))

rule 1

rule 1

rule 2

rule 2

Search for c that make the program correct:
 #(0 0)
 #(0 1)
 #(1 0)
 #(1 1)

rule 1 rule 2

17

(define (square x) (* x x))

(define (pow b n)
 (cond
 ((even? n) (square (pow b (/ n 2))))
 ((odd? n) (* n (pow b (- n 1))))
))

Example student’s program:

Hint:

The computer thinks that:
1. The body of the body expression at line 6 has some logical errors. 

What value should you multiply by?
2. You may have forgotten to specifically handle some of these following cases
 or handle them incorrectly in function (pow b n):
 (= n 0)

1
2
3
4
5
6
7

How Does Repair Synthesizer Work?

rule 1 n —> b

rule 2 add a base case

18

Correct Program?

Soft Correctness  
Correct on all test cases

Hard Correctness 
Semantically equivalent to the teacher’s solution

http://emina.github.io/rosette/

• Use Rosette, a solver-aided language, embedded in Racket
• Translate code into logical constraints (i.e. SMT)
• Ask SMT to check program equivalence between solution
and a mutated program

http://emina.github.io/rosette/

Case Analyzer

19

Syntactic
Misconception Almost Correct The Rest

Structural
Checker

Repair
Synthesizer Case Analyzer

Syntactic Hints Repair Hints Case Hints

20

(define (S x)
 (cond
 ((null? (cdr x)) #t)
 ((< (car x) (cadr x)) (S (cdr x)))
))

Student’s program:

Hint:

In your function (S x), what will happen if the inputs to the (recursive) function
meet one of the following conditions?  
Does your function handle these scenarios correctly?
 a. (<= (car x) (cadr x))
 b. (and (not (null? (cdr x)))
 (not (<= (car x) (cadr x))))

Missing Cases —> Case Analyzer

21

Instructor’s program

Student’s program

(define (I x)
 (cond
 ((null? (cdr x)) #t)
 ((<= (car x) (cadr x)) (I (cdr x)))
 (else #f)))

(define (S x)
 (cond
 ((null? (cdr x)) #t)
 ((< (car x) (cadr x)) (S (cdr x)))
))

(null? (cdr x))
(and (not (null? (cdr x))) (<= (car x) (cadr x)))

(and (not (null? (cdr x)))
 (not (<= (car x) (cadr x))))

(null? (cdr x))

(and (not (null? (cdr x))) (< (car x) (cadr x)))

Extract program paths

HintIn your function (S x), what will happen if the inputs to the (recursive) function
meet one of the following conditions?  
Does your function handle these scenarios correctly?
 (<= (car x) (cadr x))
 (and (not (null? (cdr x)))
 (not (<= (car x) (cadr x))))

How Does Case Analyzer Work?

22

Test results …

Asking for Hints

23

Structural
Checker

Repair
Synthesizer Case Analyzer

Syntactic Hints Repair Hints Case Hints

DrRacket Compile-time
Errors

no error

no error no fix

error

found
errors

found
fixes

missing 
cases

No-Missing  
Case Hints

no
missing 
cases

System Implementation

Usage

24

918 out of 1,485 students asked for hints.

of hints generated

compile-time error
high-level syntax
detailed syntax
repair hints
case hints
no-missing-case

syntax misconception
repair hints
case hints

no-missing-case

% of total hints

0 10 20 30 40

Q1: Did hints help students
complete the assignment?

Hints were helpful overall

26

Compared # of attempts for identical homework across  
two offerings of the course (one with hints, one without)
• 18% drop in the number of attempts when hints are available
• Statistically significant (p < 0.001)
• Students are almost entirely identical demographically

All types of hints were helpful

27

Syntax misconception hints were extremely effective.
• Students who requested a hint struggled for 4.7 attempts

(average) on the same error before receiving hints.
• Those student fixed/changed the error after 2 attempts (average)

after receiving hints.

85% of students benefited from repair hints.

48% of students benefited from missing-case/non-missing-case hints.

Q2: Do students build  
a dependence?

Do students build a dependence?

29

Seems like they are not

< 5% of students "abused" the system by asking for more than 8 hints
on a question.

www.bestppt.com

mangpo@eecs.berkeley.edu

Thank you

Reference:  
High Coverage Hint Generation  
for Massive Courses
ITICSE 2017

Some Student Feedback

"It made the homework go faster [because] I didn’t have to
wait for office hours or a response on [the online Q&A forum].”

“Just want to say that the hint function is extremely helpful!
It saved me a lot of time and frustration by pointing out

something that I would never have thought on my own.”

mailto:mangpo@eecs.berkeley.edu?subject=Hint%20System%20(RacketCon)

