
High-Coverage Hint Generation for Massive Courses

Do Automated Hints Help CS1 Students?

Phitchaya Mangpo Phothilimthana
University of California, Berkeley

mangpo@eecs.berkeley.edu

Sumukh Sridhara
University of California, Berkeley

sumukh@berkeley.edu

ABSTRACT
In massive programming courses, automated hint generation
offers the promise of zero-cost, zero-latency assistance for
students who are struggling to make progress on solving a
program. While a more robust hint generation approach
based on path construction requires tremendous engineering
effort to build, another easier-to-build approach based on
program mutations suffers from low coverage.

This paper describes a robust hint generation system that
extends the coverage of the mutation-based approach us-
ing two complementary techniques. A syntax checker de-
tects common syntax misconception errors in individual sub-
expressions to guide students to partial solutions that can
be evaluated for the semantic correctness. A mutation-based
approach is then used to generate hints for almost-correct
programs. If the mutation-based approach fails, a case ana-
lyzer detects missing program branches to guide students to
partial solutions with reasonable structures.

After analyzing over 75,000 program submissions and 8,789
hint requests, we found that using all three techniques to-
gether could offer hints for any program, no matter how far
it was from a correct solution. Furthermore, our analysis
shows that hints contributed to students’ progress while still
encouraging the students to solve problems by themselves.

Keywords
Computer-Aided Education; Program Synthesis; Program
Analysis; Automated Tutor

1. INTRODUCTION
In an introductory programming course, there are many

ways for students to receive help, such as going to office
hours to ask in person and posting to the online course fo-
rum. However, as course enrollment increases, it becomes
harder to scale these support mechanisms. An automated
approach offers a scalable alternative.

Many intelligent systems have been developed to automat-
ically provide guidance to students completing programming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ITiCSE ’17, July 3–5, 2017, Bologna, Italy.
c© 2017 ACM. ISBN 978-1-4503-4704-4/17/07. . . 15.00

DOI: http://dx.doi.org/10.1145/3059009.3059058

exercises. Hint generation via path construction leverages
existing student submissions to construct the most desirable
path to a correct solution [1, 6, 4, 5, 7]. This approach can
theoretically generate hints for any program, but in prac-
tice, it requires a tremendous amount of engineering effort
for instructors to build a robust (high-coverage) hint genera-
tion system; the most robust system, ITAP, requires a large
number of non-trivial program transformations to canonical-
ize students’ programs and to undo the canonicalization [7].

Another popular approach, mutation-based, uses error mod-
els — or mutation rules, provided by the instructor — to
mutate a student’s incorrect program until it is semanti-
cally equivalent to a teacher’s solution [8, 9]. Hints can then
be naturally derived from the mutation rules that fix the
program. While this approach requires far less engineering
effort, it may fail to generate hints, especially when a stu-
dent’s program is not close to a correct solution.

This paper extends the mutation-base hint generation us-
ing complementary techniques to build a high-coverage hint
generation system for Scheme assignments that:

• can provide hints for any program, no matter how far
it is from a correct solution

• converts results from its internal algorithms to mean-
ingful hints shown to students

• allows an instructor to add new problems and cus-
tomize hint messages easily, and

• has been deployed and evaluated in a large introduc-
tory programming course with roughly 1,500 students
and over 75,000 attempts on a single assignment.

2. OUR APPROACH
Our hint generation system was deployed in UC Berke-

ley’s introductory computer science course. During the mid-
dle of the term, the course switched from using Python to
Scheme. The course staff often complained that in Scheme
office hours, they had to address the same question or similar
syntax misconceptions repeatedly.

After reviewing student programs, we recognized three
main categories of student errors. Instead of using a single
approach to handle all kinds of errors, our system handles
each kind differently.

The first category contains programs with semantic errors
due to syntax misconceptions. Our observations revealed
that this category covers a significant portion of incorrect
programs because many students struggle with the place-
ment of parenthesis in Scheme. For example, many students
attempt to call a Scheme function with f(x) instead of the

Structural
Checker

Repair
Synthesizer

Case
Analyzer

no errror no fix

Hint Display

found syntax
misconceptions

found
fixes

found
missing cases

no
missing case

syntax-
misconception
hint

precise
semantics
hint

missing-case
hint

no-missing-case
hint

program Scheme
Interpreter

no compile-time error

compile-time
errors

Figure 1: The workflow of the hint generator

correct way, (f x). To handle programs in this category,
the system applies pattern matching on students’ programs
to check if there are common syntax misconception errors.

The second category contains programs that are almost
correct. We handle this category by using the mutation-
based hint generation approach. We improve upon the exist-
ing systems by introducing a more convenient way to encode
error models for a new problem and allowing an instructor to
customize a hint message associated with each error model.

The third category contains programs that are far from
being correct. To handle programs in this category, we in-
vent a case analysis technique to check if the student’s so-
lution contains all conditional checks (e.g. if/cond state-
ments’ conditions) appeared in the teacher’s solution. Un-
like the mutation-based technique, the case analysis tech-
nique does not know how to fix a student’s program. In-
stead, it prompts the student to think about cases that he
or she may have missed, thus, guiding the student toward a
partial solution with a reasonable program structure.

Deploying all three different hint generation techniques
together in a single system in a massive course showed that
none of them alone would have been sufficient to generate
helpful hints reliably.

3. HINT GENERATION
Figure 1 displays the workflow of our hint system, con-

sisting of a Scheme interpreter and three hint generation
components—the structural checker, the repair synthesizer
(program mutator), and the case analyzer—corresponding
to the three different types of programs described in Sec-
tion 2. The system first checks a student’s program with a
Scheme interpreter to ensure there is no compile-time error
before trying to generate:

1. a syntax misconception hint using the structural checker

2. a precise semantics hint using the repair synthesizer

3. a missing-case hint or no-missing-case hint using the
case analyzer.

3.1 Structural Checker
The structural checker searches for an expression in a pro-

gram that matches one of the invalid Scheme patterns de-
scribed in Table 1. If the checker finds one or more invalid
patterns, it displays a syntax misconception hint to the stu-
dent. We designed the hint system to reveal details over
time: it shows high-level hints within the first five attempts
and then displays detailed hints after that. Most detailed

The computer th inks that your program lacked or
had extra p a i r s o f parenthese s .

(a) High-level syntax misconception hint

>> Syntax expert :
Check the syntax o f the c o n d i t i o n a l c l au s e
at l i n e 95 .

Example (s) o f c o r r e c t syntax :
(cond ((> a b) (∗ a b)) (e l s e (func a b)))

Example (s) o f bad syntax :
(cond ((> a b) ∗ a b) (e l s e func a b))

(b) Detailed syntax misconception hint

Figure 2: Examples of Scheme syntax misconception hints

syntax misconception hints not only point out mistakes but
also provide examples of correct syntax for a similar expres-
sion to the student’s problematic expression. Figures 2a
and 2b show an example of a high-level and a detailed syn-
tax misconception hint respectively. Note that the Scheme
interpreter will not detect this type of error during compile
time but will instead display a more obscure runtime error.

3.2 Repair Synthesizer
The repair synthesizer is based on the mutation-based

hint generation system used by the EdX MITx 6.00x pro-
gramming course [9]. We implemented a similar system for
Scheme instead of Python. Given a student program and
error models (mutation rules), the system applies the error
models on the student program to generate all possible mu-
tations of the student program. If the synthesizer finds a
correct mutated program — semantically equivalent to the
instructor provided solution — it generates a hint based on
the mutations applied. Figure 3 displays an example of a
hint generated from our repair synthesizer when it fixes a
program using two mutation rules; the first rule deletes one
of the conditions in cond, and the second rule adds a base
case. Although the system knows how to fix students’ pro-
grams precisely, it does not tell the students exactly how to
do so. Instead, the system guides them to reach the correct
solution by themselves.

We utilize Rosette [11], a solver-aided language, as a con-
straint solver to prove an equivalence of two programs. Rosette
is particularly suitable for building a repair synthesizer for
Scheme programs because Rosette is an embedded language
in Racket of which Scheme is a subset. Unlike the prior
work, which converts a student’s Python program into the
Sketch language [10], we do not need to convert programs
into another representation to synthesize fixes.

Adding New Error Models
To enable the repair synthesizer, an instructor must provide
students’ error models. An error model captures a com-

The computer th inks that :
1 . One o f the cond i t i on s in ‘ cond ’ at l i n e 9 i s

unnecessary and causes an e r r o r .
2 . You may have f o r go t t en to s p e c i f i c a l l y handle

some o f these f o l l o w i n g ca s e s
or handle them i n c o r r e c t l y in func t i on (f s) :

(number? s)

Figure 3: An example of a precise semantics hint

Construct Error Example
cond missing a test expression or a body (cond ((> a b) #t) (#f))
cond missing a pair of parentheses around a body (cond ((> a b) * a b) (else func a b))
cond missing a pair of parentheses around a test expression (cond (> a b #t) (else #f))
cond missing a pair of parentheses around a test expression, body pair (cond (> a b) #t else #f)
if not matching (if test-expr then-expr else-expr) (if (< a b) #t)
define no body (define (min a b))
define multiple bodies that return non-void values (define (min a b) (if (<= a b) a) (if (<= b a) b))

Table 1: A list of invalid Scheme patterns used in the structural checker

context : (cond . . . (?) . . .) [Rule A]
mutation : (cdr $x) => $x

context : (d e f i n e (f $arg) ?) [Rule B]
mutation : $x => (cond ((= $arg 0) 1) (e l s e $x))
h int : You may have f o r go t t en to handle a base case

when the argument i s equal to 0 .

Figure 4: Examples of mutation rules

mon mistake that students make, along with potential fixes.
Some error models are applicable to most problems, such as
an off-by-one error, using ≤ instead of ≥, and using true in-
stead of false. Some error models are unique to a problem,
such as missing base cases.

An improvement of our repair synthesizer over the prior
work is a more convenient method to encode error models.
In the prior work, instructors specify error models by over-
riding functions to mutate different types of AST nodes in
students’ programs. This method requires instructors to be
familiar with the system’s internals. Specifically, they must
know about the mutation functions they need to override
and the provided utility functions that can be used inside
the mutation functions. A typical implementation of muta-
tion functions for one question requires 300 lines of code.

In our system, instructors can conveniently encode error
models by defining mutation rules without any knowledge
of the system’s internals. A rule consists of two parts: a
context where a mutation can be applied and the mutation
itself. Figure 4 shows examples of mutation rules.1 The sym-
bol ? identifies where in the context the mutation should be
applied. For Rule A, the context indicates that the muta-
tion can be applied only to a body expression inside cond;
? in (_ ?) indicates a body position; whereas , which is a
test expression, is ignored. Its mutation rule indicates that
if a body matches (cdr $x), we can try to replace the body
with just $x; the symbol $ informs the system that the term
can match any expression. Rule B mutates a function f
by adding a base case to return 1 if the argument to the
function is 0. This rule is defined with a hint message, so if
the repair synthesizer uses this rule to fix a solution, it will
display this customized message.

3.3 Case Analyzer
When the repair synthesizer fails to provide hints, the

program is passed on to the case analyzer, which reports the
missing checks in the program with respect to all conditional
checks extracted from the instructor’s solution. Of course,
there are multiple ways to implement a correct solution, and
they may not use the same checks. However, we believe that
if students are stuck, it may still be beneficial for them to
think about scenarios that their programs have not handled.

To test if a conditional check from the instructor’s pro-

1The syntax of mutation rules used in this paper has been
modified from the actual syntax used in our working hint
generation system for the purpose of explaining the concept.

1 (d e f i n e (I x)
2 (cond
3 ((n u l l ? (cdr x)) #t)
4 ((<= (car x) (cadr x)) (I (cdr x)))
5 (e l s e #f)))

(a) Instructor’s program

check i 1 : (n u l l ? (cdr x))
check i 2 : (and (not (n u l l ? (cdr x)))

(<= (car x) (cadr x)))
check i 3 : (and (not (n u l l ? (cdr x)))

(not (<= (car x) (cadr x))))

(b) Conditional checks in the instructor’s program

1 (d e f i n e (S x)
2 (cond
3 ((< (car x) (cadr x)) (S (cdr x)))
4 ((n u l l ? (cdr x)) #t)))

(c) Student’s program

check s1 : (< (car x) (car (cdr x)))
check s2 : (and (not (< (car x) (cadr x)))

(n u l l ? (cdr x)))

(d) Conditional checks in the student’s program

In your func t i on (S x) , what w i l l happen i f
the inputs to the (r e c u r s i v e) func t i on meet
one o f the f o l l o w i n g cond i t i on s ? Does your
func t i on handle these s c e n a r i o s c o r r e c t l y ?

(n u l l ? (cdr x))
(<= (car x) (cadr x))
(and (not (n u l l ? (cdr x)))

(not (<= (car x) (cadr x))))

(e) A missing-case hint generated for the student’s program

Figure 5: How the case analyzer generates a hint

gram I, appears in a student’s program S, we first collect
all conditional checks in both I and S. We define a condi-
tional check to be the test expression (e.g. if statement’s
condition) along with the path condition to the check. Con-
sider programs in Figure 5: I in Figure 5a and S in Fig-
ure 5c contain the conditional checks shown in Figures 5b
and 5d respectively. Notice that path conditions are in-
cluded in the conditional checks. For example, the condi-
tional check i2 in Figure 5b is a conjunction of the path
condition (not (null? (cdr x))) and the test expression
(<= (car x) (cadr x)) on line 4 of Figure 5a.

Then, we check if S has all the conditional checks that
appear in I. Similar to the repair synthesizer, the case an-
alyzer tests the equivalence of two conditional checks using
Rosette. For this particular example, none of the conditional
checks in I appear in S. Notice that although the check ex-
pression (null? (cdr x)) appears in both programs, their
path conditions to the check are not the same. We consider
a path condition as part of a conditional check because it
captures the order of conditional checks, which matters for
the correctness of a program. In our running example, we
must make sure that (cdr x) is not empty before we call
(cadr x)); hence, (null? (cdr x)) must be checked first.

The computer b e l i e v e s that your program has
a l ready covered a l l p o s s i b l e s c e n a r i o s (d i f f e r e n t
cond i t i on s on the inputs) , but the l o g i c to handle
those s c e n a r i o s are s t i l l i n c o r r e c t .

Figure 6: No-missing-case generic hint

Furthermore, including path conditions reduces false alarms
(reporting missing checks when there is no missing check)
on programs with nested conditional statements and loops.

Once we have gathered all the missing conditional checks,
we generate a hint accordingly. Figure 5e is the hint pro-
duced for the program in Figure 5c. We exclude most path
conditions from a hint message to avoid complicating the
hint. However, if the check expression alone is #t (such as
else), we display the path condition. In the actual deploy-
ment, we set the system to print at most two missing cases in
each hint so that we do not give away too much information.

In the scenario that there is no missing case, the system
will print out a generic hint displayed in Figure 6.

4. SYSTEM DEPLOYMENT
We piloted our hint generation system for a Scheme as-

signment in UC Berkeley’s introductory computer science
course2 in Spring, Summer, and Fall 2016. Students are
graded on effort and completion in this assignment.

We integrated the hint system into the course autograder,
called OK3. Students use OK through the command line to
test their programs against instructor-provided tests. OK
logs every time a student runs the autograder and sends the
current copy of the program to the server [2]. To request
a hint, students simply append --hint to the command for
running the autograder. The system usually takes 1–10 sec-
onds to generate a hint.

We used the Knowledge Integration framework to design
the presentation of hints to the student [3]. Before pro-
viding hints, the system prompted the students to think
about a particular comment from a list of instructor-selected
prompts. The prompt encouraged students to reflect on
their solutions before receiving new information via hints.
Once the students had completed the problem, the system
asked them to reflect on how the hint(s) changed their un-
derstanding of the solution.

The first deployment of the system in Spring 2016 revealed
two major flaws of the system. First, the system was not
able to provide hints for more than half of the requests due to
the lack of the case analyzer. To resolve this, we developed
the case analyzer. Second, we removed the requirement to
respond to the Knowledge Integration pre-hint prompts so
that we minimize the disruption to students. We deployed
the improved system again in Summer and Fall 2016.

5. EVALUATION
We evaluated the effectiveness of the hint system by ana-

lyzing the data collected by OK in Fall 2016. In particular,
we would like to answer two major questions:

1. Did hints help students complete the assignment?

2. Did students rely on hints in a way that may compro-
mise learning?

2http://cs61a.org
3https://okpy.org

Fa16 Midterm Feedback
File Edit View Insert Format Data Tools Add-ons Help All changes saved in Drive

$ % 123

Arial 10

high-level
syntax
detailed
syntax

sign
pow

ordered
nodots

contains
add

intersect
union

0

0.15

0.3

0.45

0.6

compile-time
error
high-level
syntax
detailed syntax
precise
semantics
missing-case
no-missing-case

0 1000 2000 3000 4000

sign
pow

ordered
nodots

contains
add

intersect
union

Fa16 Midterm Feedback
Comments Share

mangpo@berkeley.edu

Hint Data Office Hours Data Hint Analysis HInt Analysis (chart) Attempt Counts Syntax Data Piazza Data Hint Gaming Counts1 Baseline Syntax Changes1Sheet24

Figure 7: Number of hints per type per problem

The first question helps us determine if the system was
helpful, while the second question determines if the sys-
tem discouraged students from learning to solve problems
by themselves. First, we start by presenting the general
statistics on the hint usage in Section 5.1. Then, we answer
the two central questions in Sections 5.2 and 5.3 respectively.

5.1 Hint Usage
A total of 1,485 students attempted the Scheme home-

work. The system logged approximately 75,000 student at-
tempts as well as 8,789 hint requests.

918 students used the hint generation system at least once.
The ratio of students asking for hints over all students range
from 6.7%–41% across questions. Figure 7 displays the num-
bers of hints separated by question and types of hints. The
order of the questions in the chart reflects the order pre-
sented to the students in the homework. As witnessed in
the chart, nodots is the most difficult question and had the
most number of hints requested. Also, notice that there are
large portions of compile-time errors because most students
in this course used the autograder not only to submit their
programs but also to test and debug their programs. Apart
from compile-time errors, 35% of hints were syntax miscon-
ception hints.

Among semantic hints, a majority of them were missing-
case hints, which comprised 59% of all semantic hints, fol-
lowed by precise semantic hints at 23%, and no-missing-case
hints made up the remaining 18%.

The ability to generate precise semantic hints (23%) is far
lower than that of the original work (64%) [9]. We hypothe-
size that the repair synthesizer performed worse in our real-
world deployment because according to our survey, students
requested hints mainly when they were stuck with solutions
that were not close to being correct; as a result, these pro-
grams were harder to fix with a repair synthesizer.

5.2 Contribution Effect
To evaluate the overall contribution of the hint system, we

compared the number of attempts students made on each
problem in the assignment between Fall 2016 (with a hint
system) and Fall 2015 (no hint system). An attempt is de-
fined as an instance of a student locally running the auto-
grader tests to determine if the current program is correct.
Between the two offerings, the assignment as well as the
instructor were identical, and the student population had
similar demographics.

We found an 18.8% drop in the number of attempts made
by students to get to a correct solution in Fall 2016, com-
pared to that of Fall 2015. This reduction of the number
of attempts was statistically significant (p < 0.001). The

effect was particularly pronounced for students in the upper
quartile of the number of attempts, demonstrating that the
hint system helped students make progress.

In the rest of this section, we evaluate the contribution
effects of the different categories of hints separately, using
the data collected in Fall 2016.

5.2.1 Syntax Misconception Hints
Many students struggled with syntax misconceptions, mak-

ing many attempts while trying to resolve their syntax er-
rors. Students who used our hint system for syntax errors
had been struggling with the same error for an average of
4.69 attempts before requesting a hint. After receiving a
hint, the median amount of attempts to change the error
was one attempt. This metric shows that while our hint
system did not result in students immediately resolving all
of their syntax errors, it helped students move past their
current error and advance towards a correct submission.

5.2.2 Semantics Hints
To evaluate the semantics hints, we manually inspect stu-

dents’ programs from the log files collected by OK. A single
log file contained a sequence of program snapshots of a stu-
dent solving a single problem over time along with the hints
seen by the student. Of the 1,218 log files that contained at
least one semantics hint, we randomly selected 89 log files
to analyze, giving us a 95% confidence level with 10% con-
fidence interval. For each log file, we evaluated the reaction
effect and the contribution effect of the hints.

The reaction effect measures how frequently the student
modified the program according to hints whether or not the
changes were toward the right direction. The reaction effect
gives us an idea of how useful the hints were at the moment.
It is computed by dividing the number of times the student
reacted to hints by the total number of the hints received.

A contribution effect measures how much the hints con-
tributed to the student’s final solution. Its value ranges
from 1 to 5: 1) no contribution, 2) neutral (unsure), 3) lit-
tle contribution, 4) moderate contribution, or 5) significant
contribution to the final solution of the student. Note that
a contribution effect of 5 does not imply that the hints gave
away the answer, rather that the hints influenced the stu-
dent to arrive at the correct answer.

The two authors scored the reaction effect and the contri-
bution effect of the hints of each log file. The average scores
from the two authors were then used in this analysis.

We analyzed the reaction and contribution effects obtained
from two groups of log files separately. The first group A
(452 log files) received at least one precise semantics hint
(and possibly other types of semantics hints). The second
group B (766 log files) received only missing-case and/or
non-missing-case hints. We separated the two groups be-
cause hints from the case analyzer (missing-case and non-
missing-case hints) are less informative than hints from the
repair synthesizer (precise semantics hints). Note that the
students in both of the groups might have also received syn-
tax misconception hints, but we ignore the effects from the
syntax misconception hints in this section.

Figures 8 and 9 display histograms of the reaction and
contribution effects on group A and B, respectively. Accord-
ing to the reaction effects histograms, most students in both
groups made changes related to the hints. However, there
is a significant number of students from group B (24%) who

Figure 8: Histograms of effects from hints when students
were receiving at least one precise semantics hint (group A).
A reaction effect measures how often a student reacted to
hints. A contribution effect measures how much hints con-
tributed to a student’s final solution.

Figure 9: Histograms of effects from hints when students
were receiving only missing-case and/or non-missing-case
hints (group B)

rarely made changes related to hints (the first bin). Regard-
ing the contribution effects, group A benefited from using
hints 85% of the times, while only 48% for group B (bins
3–5). This result is not surprising because of two main rea-
sons. First, hints from the case analyzer were more generic
than hints from the repair synthesizer. Unlike the repair
synthesizer, the case analyzer did not describe a specific fix
for an incorrect program. Second, the case analyzer was
only being evaluated on programs where the contribution of
the mutation-based technique would have been zero because
the mutation-based technique failed to generate a hint. Al-
though the case analyzer did not appear to be as helpful as
the repair synthesizer at first, it did help at least half of the
students that the repair synthesizer could not help at all.

5.3 Dependence on Hints
The main concern with hints is that students may rely on

hints too heavily and therefore avoid learning to solve prob-
lems by themselves. In this section, we show that students
did not build dependence on the hint generation system.

5.3.1 Syntax Misconception Hints
Our hint system provided syntax misconception hints in

the high-level form if a student made fewer than five at-
tempts; otherwise, it displayed detailed information. We
computed the ratio of high-level and detailed syntax miscon-
ception hints over all hints presented to students. Figure 10
shows that students who used the hint system received fewer
detailed syntax hints over time, thus, more capable of fixing
syntax misconceptions themselves.

5.3.2 Semantics Hints
We evaluated the rate at which students relied heavily on

hints by analyzing a sample of the log files. Examining the

Fa16 Midterm Feedback
File Edit View Insert Format Data Tools Add-ons Help All changes saved in Drive

$ % 123

Arial 10

high-level
syntax
detailed
syntax

sign
pow

ordered
nodots

contains
add

intersect
union

0

0.15

0.3

0.45

0.6

compile-time
error
high-level
syntax
detailed syntax
precise
semantics
missing-case
no-missing-case

0 1000 2000 3000 4000

sign
pow

ordered
nodots

contains
add

intersect
union

Fa16 Midterm Feedback
Comments Share

mangpo@berkeley.edu

Hint Data Office Hours Data Hint Analysis HInt Analysis (chart) Attempt Counts Syntax Data Piazza Data Hint Gaming Counts1 Baseline Syntax Changes1Sheet24

Figure 10: Ratios of high-level and detailed syntax miscon-
ception hints over all hints. The X axis is ordered from first
to last problems in the assignment.

log files revealed that students who seemed to be mining the
system for hints instead of trying to solve problems on their
own obtained a large number of semantics hints (eight or
more). There were a few students who did not rely on the
hints heavily but received more than eight semantics hints.
However, we took a conservative approach and categorized
receiving eight or more semantic hints as relying too heavily
on the system in a way that could compromise learning.

Out of students who received hints, the number of stu-
dents who heavily relied on the system ranges from 0–3.8%
across all problems except for nodots, which was 14%. Since
nodots required many more attempts on average, it was
more likely that these students actually needed more help
and were not mining for more hints. Ignoring the outlier
nodots, we conclude that only a small percentage of students
misused the hint system and that the majority of students
used the hint system as an assistant to help them learn.

6. DISCUSSION
The typical approach to individually helping students on

programming assignments is difficult to scale to large courses.
In this paper, we presented an automated hint generation
system as a way to scale help to all students. We built on
prior work to create a reliable hint system and deployed it in
a massive CS1 course. The data collected from the deploy-
ment showed that applying different hint generation tech-
niques enabled our system to provide hints reliably. Addi-
tionally, our hint system often helped students solving prob-
lems without having an adverse impact on learning.

According to the optional survey given to the students,
there was a mix of both positive and negative responses.
Many students expressed that the hint generation system
was helpful: “it made the homework go faster, so I didn’t
have to wait for office hours or a response on [the online
Q&A forum].” However, some students thought it was not:
“it told me something I was already taking into account.” In-
terestingly, some students expressed that they did not want
any hint because“debugging the code on my own encourages
more critical thinking and would help me learn more” and
that hints would “diminish group collaboration.”

Our experience suggests several ways that the system could
be improved further. First, according to the survey, stu-
dents expressed that some hints were not helpful because
they contained Scheme expressions, which the students did
not understand (e.g. hints in Figures 3 and 5e). To address
this, we have customized hint messages in the repair synthe-
sizer, and modified the case analyzer to output the missing
cases in natural language and to suggest Scheme primitive
functions that may be useful.

Secondly, instead of comparing a student’s program to the
instructor’s solution (which may be very different), the case
analyzer could compare the student’s program to the most
similar correct submission from all students. This way, the
case analyzer can guide students toward more appropriate
program structures for their current approaches.

Third, apart from providing more details for syntax mis-
conception hints after five attempts, the hint system pro-
duces the same hint given the same student’s program. Con-
sequently, if students could not make any progress and ask
for hints several times, they will receive exactly the same
hint. Ideally, the system should detect this scenario and
provide new information if possible or suggest students to
review the material. As a step towards this, we have modi-
fied the system to provide a link to a Scheme tutorial when a
student receives more than three syntax misconception hints
on the same problem.

7. ACKNOWLEDGMENTS
We would like to thank Marcia Linn, Michael Clancy, and

Eliane Wiese for their feedback on our system design; John
DeNero and Andy Ko for their feedback on the paper.

8. REFERENCES
[1] T. Barnes and J. Stamper. Toward Automatic Hint

Generation for Logic Proof Tutoring Using Historical
Student Data, pages 373–382. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[2] S. Basu, A. Wu, B. Hou, and J. DeNero. Problems
before solutions: Automated problem clarification at
scale. In L@S, 2015.

[3] M. C. Linn, H.-S. Lee, R. Tinker, F. Husic, and J. L.
Chiu. Teaching and assessing knowledge integration in
science. Science, 313(5790):1049–1050, 2006.

[4] C. Piech, M. Sahami, J. Huang, and L. Guibas.
Autonomously generating hints by inferring problem
solving policies. In L@S, 2015.

[5] T. W. Price, Y. Dong, and T. Barnes. Generating
data-driven hints for open-ended programming. In
EDM, 2016.

[6] K. Rivers and K. R. Koedinger. Automating Hint
Generation with Solution Space Path Construction,
pages 329–339. Springer International Publishing,
Cham, 2014.

[7] K. Rivers and K. R. Koedinger. Data-driven hint
generation in vast solution spaces: a self-improving
python programming tutor. International Journal of
Artificial Intelligence in Education, 27(1):37–64, 2017.

[8] R. Rolim, G. Soares, L. D’Antoni, O. Polozov,
S. Gulwani, R. Gheyi, R. Suzuki, and B. Hartmann.
Learning syntactic program transformations from
examples. In ICSE, 2017.

[9] R. Singh, S. Gulwani, and A. Solar-Lezama.
Automated feedback generation for introductory
programming assignments. In PLDI, 2013.

[10] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and
V. Saraswat. Combinatorial sketching for finite
programs. In ASPLOS, 2006.

[11] E. Torlak and R. Bodik. A lightweight symbolic
virtual machine for solver-aided host languages. In
PLDI, 2014.

